Simple Route to Obtain Nanostructured CeO2 Microspheres and CO Gas Sensing Performance
نویسندگان
چکیده
منابع مشابه
Simple Route to Obtain Nanostructured CeO2 Microspheres and CO Gas Sensing Performance
In this work, nanostructured CeO2 microspheres with high surface area and mesoporosity were prepared by the coprecipitation method, in absence of a template. The reaction between cerium nitrate and concentrated formic acid produced cerium formate, at room temperature. Further, calcination at 300 °C yielded single-phase CeO2 microspheres, with a diameter in the range 0.5-2.6 μm, the surface of t...
متن کاملFe-Loaded CeO2 Nanosized Prepared by Simple Co-Precipitation Route
FeCe nanoparticles were synthesized by simple co-precipitation method using Iron chloride hexahydrate (FeCl3.6H2O) and cerium chloride (CeCl2•5H2O) as precursors in the presence of cetyltrimethylammonium bromide (CTAB) surfactant. The samples were characterized by high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XR...
متن کاملCeO2 Enhanced Ethanol Sensing Performance in a CdS Gas Sensor
CdS nanowires (NWs) were fabricated through a facile low-temperature solvothermal method, following which CeO₂ nanoparticles were modified on the NWs. The ethanol sensing characteristics of pure CdS and decorated ones with different CeO₂ content were studied. It was found that the sensing performance of CdS was significantly improved after CeO₂ decoration. In particular, the 5 at% CeO₂/CdS comp...
متن کاملNanostructured Au–CeO2 catalysts for low-temperature water–gas shift
The composite system of nanostructured gold and cerium oxide, with a gold loading 5–8 wt%, is reported in this work as a very good catalyst for low-temperature water–gas shift. Activity depends largely on the presence of nanosized ceria particles. Various techniques of preparation of an active catalyst are disscussed. The presence of gold is crucial for activity below 300 ◦C. A dramatic effect ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale Research Letters
سال: 2017
ISSN: 1931-7573,1556-276X
DOI: 10.1186/s11671-017-1951-x